A Density Functional Tight Binding Layer for Deep Learning of Chemical Hamiltonians
نویسندگان
چکیده
منابع مشابه
Effect of Curvature on the Mechanical Properties of Graphene: A Density Functional Tight-binding Approach
Due to the high cost of experimental analyses, researchers used atomistic modeling methods for predicting the mechanical behavior of the materials in the fields of nanotechnology. In the pre-sent study the Self-Consistent Charge Density Functional Tight-Binding (SCC-DFTB) was used to calculate Young's moduli and average potential energy of the straight and curved graphenes with different curvat...
متن کاملDensity functional tight binding.
This paper reviews the basic principles of the density-functional tight-binding (DFTB) method, which is based on density-functional theory as formulated by Hohenberg, Kohn and Sham (KS-DFT). DFTB consists of a series of models that are derived from a Taylor series expansion of the KS-DFT total energy. In the lowest order (DFTB1), densities and potentials are written as superpositions of atomic ...
متن کاملDensity-functional tight-binding for beginners
This article is a pedagogical introduction to density-functional tight-binding (DFTB) method. We derive it from the density-functional theory, give the details behind the tight-binding formalism, and give practical recipes for parametrization: how to calculate pseudo-atomic orbitals and matrix elements, and especially how to systematically fit the short-range repulsions. Our scope is neither to...
متن کاملTight-binding Hamiltonians for Carbon and Silicon1
We demonstrate that our tight-binding method { which is based on tting the energy bands and the total energy of rst-principles calculations as a function of volume { can be easily extended to accurately describe carbon and silicon. We present equations of state that give the correct energy ordering between structures. We also show that quantities that were not tted, such as elastic constants an...
متن کاملWater clusters to nanodrops: a tight-binding density functional study.
We predict structures and energies of water clusters containing up to 100 waters with tight-binding density functional theory (DFTB). A per-hydrogen-bond energy correction is found to correct for systematic errors in the DFTB cluster energies. We compare the DFTB structures and energies to density functional theory (DFT) calculations and to the most accurate wave function theoretical (WFT) valu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Chemical Theory and Computation
سال: 2018
ISSN: 1549-9618,1549-9626
DOI: 10.1021/acs.jctc.8b00873